Elektron

Elektron adalah partikel subatomik yang bermuatan negatif dan umumnya ditulis sebaga e-. Elektron tidak memiliki komponen dasar ataupun substruktur apapun yang diketahui, sehingga ia dipercayai sebagai partikel elementer. Elektron memiliki massa sekitar 1/1836 massa proton. Mometum sudut (spin) instrinsik elektron adalah setengah nilai integer dalam satuan ħ, yang berarti bahwa ia termasuk fermion. Antipartikel elektron disebut sebagai positron, yang identik dengan elektron, kecuali bahwa ia bermuatan positif. Ketika sebuah elektron bertumbukan dengan positron, keduanya kemungkinan dapat saling berhambur ataupun musnah total, menghasilan sepasang (atau lebih) foton sinar gama. Elektron, yang termasuk ke dalam generasi keluarga partikel lepton pertama, berpartisipasi dalam interaksi gravitasional, interaksi elektromagnetik dan interaksi lemah. Sama seperti semua materi, elektron memiliki sifat bak partikel maupun bak gelombang (dualitas gelombang-partikel), sehingga ia dapat bertumbukkan dengan partikel lain dan berdifraksi seperti cahaya. Oleh karena elektron termasuk fermion, tiada dua elektron yang dapat menduduki keadaan kuantum yang sama sesuai dengan asas pengecualian Pauli.
Konsep muatan listrik yang tidak dapat dibagi-bagi lagi diteorikan untuk menjelaskan sifat-sifat kimiawi atom oleh filsuf alam Richard Laming pada awal tahun 1838; nama electron diperkenalkan untuk menamakan muatan ini pada tahun 1894 oleh fisikawan Irlandia George Johnstone Stoney. Elektron berhasil diidentifikasikan sebagai partikel pada tahun 1897 oleh J. J. Thomson.
Dalam banyak fenomena fisika, seperti listrik, magnetisme dan konduktivitas termal, elektron memainkan peran yang sangat penting. Suatu elektron yang bergerak relatif terhadap pengamat akan menghasilkan medan magnetik dan lintasan elektron tersebut juga akan dilengkungkan oleh medan magnetik eksternal. Ketika sebuah elektron dipercepat, ia dapat menyerap ataupun memancarkan energi dalam bentuk foton. Elektron bersama-sama dengan inti atom yang terdiri dari proton dan neutron, membentuk atom. Namun, elektron hanya menduduki 0,06% massa total atom. Gaya tarik Coulomb antara elektron dengan proton menyebabkan elektron terikat dalam atom. Pertukaran ataupun perkongsian elektron antara dua atau lebih atom merupakan sebab utama terjadinya ikatan kimia.
Menurut teorinya, kebanyakan elektron dalam alam semesta diciptakan pada persitiwa Big Bang, namun ia juga dapat diciptakan melalui peluruhan beta isotop radioaktif maupun dalam tumbukan berenergi tinggi, misalnya pada saat sinar kosmis memasuki atmosfer. Elektron dapat dihancurkan melalui pemusnahan dengan positron, maupun dapat diserap semasa nukleosintesis bintang. Peralatan-peralatan laboratorium modern dapat digunakan untuk memuat ataupun memantau elektron individual. Elektron memiliki banyak aplikasinya dalam teknologi modern, misalnya dalam mikroskop elektron, terapi radiasi, dan pemercepat partikel.

Sejarah

Orang Yunani Kuno memperhatikan bahwa ambar dapat menarik benda-benda kecil ketika digosok-gosokkan dengan bulu hewan. Selain petir, fenomena ini merupakan salah satu catatan terawal manusia mengenai listrik. Dalam karya tahun 1600-nya De Magnete, fisikawan Inggris William Gilbert menciptakan istilah baru electricus untuk merujuk pada sifat penarikan benda-benda kecil setelah digosok. Bahasa Inggris untuk kata electric diturunkan dari bahasa Latin ēlectrum, yang berasal dari bahasa Yunani ήλεκτρον (ēlektron) untuk batu ambar.

Listrik

Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:
  • Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
  • Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.
Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik.

Sifat-sifat listrik

Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik.

Berkawan dengan listrik

Listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.

Polimer sintetik

Polimer sintetik sering ditunjuk sebagai plastik, seperti polyethylene dan nylon. Namun, kebanyakan dapat dikelompokan dalam paling tidak tiga kategori utama: thermoplastik, thermoset, dan elastomer.
Polimer buatan biasanya digunakan dalam banyak aplikasi: pemaketan makanan, film, fiber, tube, pipa, dll. Industri perawatan pribadi juga menggunakan polimer untuk membantu dalam tekstur produk, pengikatan, dan 'moisture retention' (seperti dalam gel dan conditioner rambut).

Contoh

Daftar sebagian dari bahan ini adalah sebagai berikut:
  • acrylonitrile butadiene styrene (ABS)
  • polyamide (PA)
  • polybutadiene
  • poly(butylene terephthalate) (PBT)
  • polycarbonate (PC)
  • poly(ether sulphone) (PES, PES/PEES)
  • poly(ether ether ketone)s (PEEK, PES/PEEK)
  • polyethylene (PE)
  • poly(ethylene glycol) (PEG)
  • poly(ethylene terephthalate) (PET)
  • polyimide
  • polypropylene (PP)
  • polytetrafluoroethylene (PTFE)
  • polystyrene (PS)
  • styrene acrylonitrile (SAN)
  • poly(trimethylene terephthalate) (PTT)
  • polyurethane (PU)
  • polyvinylchloride (PVC)
  • polyvinylidenedifluoride (PVDF)
  • poly(vinyl pyrrolidone) (PVP)

    Nama merk

Polietilena

Polietilena (disingkat PE) (IUPAC: Polietena) adalah termoplastik yang digunakan secara luas oleh konsumen produk sebagai kantong plastik. Sekitar 60 juta ton plastik ini diproduksi setiap tahunnya.
Polietilena adalah polimer yang terdiri dari rantai panjang monomer etilena (IUPAC: etena). Di industri polimer, polietilena ditulis dengan singkatan PE, perlakuan yang sama yang dilakukan oleh Polistirena (PS) dan Polipropilena (PP).
Molekul etena C2H4 adalah CH2=CH2. Dua grup CH2 bersatu dengan ikatan ganda. Polietilena dibentuk melalui proses polimerisasi dari etena. Polietilena bisa diproduksi melalu proses polimerisasi radikal, polimerisasi adisi anionik, polimerisasi ion koordinasi, atau polimerisasi adisi kationik. Setiap metode menghasilkan tipe polietilena yang berbeda.

Sejarah

Polietilena pertama kali disintesis oleh ahli kimia Jerman bernama Hans von Pechmann yang melakukannya secara tidak sengaja pada tahun 1989 ketika sedang memanaskan diazometana. Ketika koleganya, Eugen Bamberger dan Friedrich Tschirner mencari tahu tentang substansi putih, berlilin, mereka mengetahui bahwa yang ia buat mengandung rantai panjang -CH2- dan menamakannya polimetilena.
Kegiatan sintesis polietilena secara industri pertama kali dilakukan, lagi-lagi, secara tidak sengaja, oleh Eric Fawcett dan Reginald Gibson pada tahun 1933 di fasilitas ICI di Northwich, Inggris. Ketika memperlakukan campuran etilena dan benzaldehida pada tekanan yang sangat tinggi, mereka mendapatkan substansi yang sama seperti yang didapatkan oleh Pechmann. Reaksi diinisiasi oleh keberadaan oksigen dalam reaksi sehingga sulit mereproduksinya pada saat itu. Namun, Michael Perrin, ahli kimia ICI lainnya, berhasil mensintesisnya sesuai harapan pada tahun 1935, dan pada tahun 1939 industri LDPE pertama dimulai.

Klasifikasi

Polietilena terdiri dari berbagai jenis berdasarkan kepadatan dan percabangan molekul. Sifat mekanis dari polietilena bergantung pada tipe percabangan, struktur kristal, dan berat molekulnya.
  • Polietilena bermassa molekul sangat tinggi (Ultra high molecular weight polyethylene) (UHMWPE)
  • Polietilena bermassa molekul sangat rendah (Ultra low molecular weight polyethylene) (ULMWPE atau PE-WAX)
  • Polietilena bermassa molekul tinggi (High molecular weight polyethylene) (HMWPE)
  • Polietilena berdensitas tinggi (High density polyethylene) (HDPE)
  • [[Polietilena cross-linked berdensitas tinggi]] (High density cross-linked polyethylene) (HDXLPE)
  • [[Polietilena cross-linked]] (Cross-linked polyethylene) (PEX atau XLPE)
  • Polietilena berdensitas menengah (Medium density polyethylene) (MDPE)
  • Polietilena berdensitas rendah (Low density polyethylene) (LDPE)
  • Polietilena linier berdensitas rendah (Linear low density polyethylene) (LLDPE)
  • Polietilena berdensitas sangat rendah (Very low density polyethylene) (VLDPE)

Fluida Newtonian

Fluida Newtonian (istilah yang diperoleh dari nama Isaac Newton) adalah suatu fluida yang memiliki kurva tegangan/regangan yang linier. Contoh umum dari fluida yang memiliki karakteristik ini adalah air. Keunikan dari fluida newtonian adalah fluida ini akan terus mengalir sekalipun terdapat gaya yang bekerja pada fluida. Hal ini disebabkan karena viskositas dari suatu fluida newtonian tidak berubah ketika terdapat gaya yang bekerja pada fluida. Viskositas dari suatu fluida newtonian hanya bergantung pada temperatur dan tekanan. Viskositas sendiri merupakan suatu konstanta yang menghubungkan besar tegangan geser dan gradien kecepatan pada persamaan
\tau=\mu\frac{dv}{dx}
dengan
τ adalah tegangan geser fluida [Pa]
μ adalah viskositas fluida – suatu konstanta penghubung [Pa•s]
\frac{dv}{dx} adalah gradien kecepatan yang arahnya tegak lurus dengan arah geser [s−1]
Perbedaan karakteristik akan dijumpai pada fluida non-newtonian. Pada fluida jenis ini, viskositas fluida akan berubah bila terdapat gaya yang bekerja pada fluida (seperti pengadukan).



http://id.wikipedia.org/wiki/Fluida_Newtonian

Viskositas

Viskositas adalah sebuah ukuran penolakan sebuah fluid terhadap perubahan bentuk di bawah tekanan shear. Biasanya diterima sebagai "kekentalan", atau penolakan terhadap penuangan. Viskositas menggambarkan penolakan dalam fluid kepada aliran dan dapat dipikir sebagai sebuah cara untuk mengukur gesekan fluid. Air memiliki viskositas rendah, sedangkan minyak sayur memiliki viskositas tinggi.

Teori Newton

Ketika sebuah tekanan shear diterapkan kepada sebuah benda padat, badan itu akan berubah bentuk sampai mengakibatkan gaya yang berlawanan untuk mengimbangkan, sebuah ekuilibrium. Namun, ketika sebuah tekanan shear diterapkan kepada sebuah fluid, seperti angin bertiup di atas permukaan samudra, fluid mengalir, dan berlanjut mengalir ketika tekanan diterapkan. Ketika tekanan dihilangkan, umumnya, aliran berkurang karena perubahan internal energi.


http://id.wikipedia.org/wiki/Viskositas

Radiasi

Dalam fisika, radiasi mendeskripsikan setiap proses di mana energi bergerak melalui media atau melalui ruang, dan akhirnya diserap oleh benda lain. Orang awam sering menghubungkan kata radiasi ionisasi (misalnya, sebagaimana terjadi pada senjata nuklir, reaktor nuklir, dan zat radioaktif), tetapi juga dapat merujuk kepada radiasi elektromagnetik (yaitu, gelombang radio, cahaya inframerah, cahaya tampak, sinar ultra violet, dan X-ray), radiasi akustik, atau untuk proses lain yang lebih jelas. Apa yang membuat radiasi adalah bahwa energi memancarkan (yaitu, bergerak ke luar dalam garis lurus ke segala arah) dari suatu sumber. geometri ini secara alami mengarah pada sistem pengukuran dan unit fisik yang sama berlaku untuk semua jenis radiasi. Beberapa radiasi dapat berbahaya.

Radiasi ionisasi

Beberapa jenis radiasi memiliki energi yang cukup untuk mengionisasi partikel. Secara umum, hal ini melibatkan sebuah elektron yang 'terlempar' dari cangkang atom elektron, yang akan memberikan muatan (positif). Hal ini sering mengganggu dalam sistem biologi, dan dapat menyebabkan mutasi dan kanker.
Jenis radiasi umumnya terjadi di limbah radioaktif peluruhan radioaktif dan sampah.
Tiga jenis utama radiasi ditemukan oleh Ernest Rutherford, Alfa, Beta, dan sinar gamma. radiasi tersebut ditemukan melalui percobaan sederhana, Rutherford menggunakan sumber radioaktif dan menemukan bahwa sinar menghasilkan memukul tiga daerah yang berbeda. Salah satu dari mereka menjadi positif, salah satu dari mereka bersikap netral, dan salah satu dari mereka yang negatif. Dengan data ini, Rutherford menyimpulkan radiasi yang terdiri dari tiga sinar. Beliau memberi nama yang diambil dari tiga huruf pertama dari abjad Yunani yaitu alfa, beta, dan gamma.
  • Radiasi alpha (α)
Peluruhan Alpha adalah jenis peluruhan radioaktif di mana inti atom memancarkan partikel alpha, dan dengan demikian mengubah (atau 'meluruh') menjadi atom dengan nomor massa 4 kurang dan nomor atom 2 kurang.
Namun, karena massa partikel yang tinggi sehingga memiliki sedikit energi dan jarak yang rendah, partikel alfa dapat dihentikan dengan selembar kertas (atau kulit).
  • Radiasi beta (β)peluruhan beta adalah jenis peluruhan radioaktif di mana partikel beta (elektron atau positron) dipancarkan.
    Radiasi beta-minus (β⁻)terdiri dari sebuah elektron yang penuh energi. radiasi ini kurang terionisasi daripada alfa, tetapi lebih daripada sinar gamma. Elektron seringkali dapat dihentikan dengan beberapa sentimeter logam. radiasi ini terjadi ketika peluruhan neutron menjadi proton dalam nukleus, melepaskan partikel beta dan sebuah antineutrino.
    Radiasi beta plus (β+) adalah emisi positron. Jadi, tidak seperti β⁻, peluruhan β+ tidak dapat terjadi dalam isolasi, karena memerlukan energi, massa neutron lebih besar daripada massa proton. peluruhan β+ hanya dapat terjadi di dalam nukleus ketika nilai energi yang mengikat dari nukleus induk lebih kecil dari nukleus. Perbedaan antara energi ini masuk ke dalam reaksi konversi proton menjadi neutron, positron dan antineutrino, dan ke energi kinetik dari partikel-partikel

  • Radiasi gamma (γ)

peluruhan gamma
Radiasi gamma atau sinar gamma adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron. Radiasi gamma terdiri dari foton dengan frekuensi lebih besar dari 1019 Hz. Radiasi gamma bukan elektron atau neutron sehingga tidak dapat dihentikan hanya dengan kertas atau udara, penyerapan sinar gamma lebih efektif pada materi dengan nomor atom dan kepadatan yang tinggi. Bila sinar gamma bergerak melewati sebuah materi maka penyerapan radiasi gamma proporsional sesuai dengan ketebalan permukaan materi tersebut.

Astronomi

Astronomi, yang secara etimologi berarti "ilmu bintang" (dari Yunani: άστρο, + νόμος), adalah ilmu yang melibatkan pengamatan dan penjelasan kejadian yang terjadi di luar Bumi dan atmosfernya. Ilmu ini mempelajari asal-usul, evolusi, sifat fisik dan kimiawi benda-benda yang bisa dilihat di langit (dan di luar Bumi), juga proses yang melibatkan mereka.
Selama sebagian abad ke-20, astronomi dianggap terpilah menjadi astrometri, mekanika langit, dan astrofisika. Status tinggi sekarang yang dimiliki astrofisika bisa tercermin dalam nama jurusan universitas dan institut yang dilibatkan di penelitian astronomis: yang paling tua adalah tanpa kecuali bagian 'Astronomi' dan institut, yang paling baru cenderung memasukkan astrofisika di nama mereka, kadang-kadang mengeluarkan kata astronomi, untuk menekankan sifat penelitiannya. Selanjutnya, penelitian astrofisika, secara khususnya astrofisika teoretis, bisa dilakukan oleh orang yang berlatar belakang ilmu fisika atau matematika daripada astronomi.Astronomi adalah salah satu di antara sedikit ilmu pengetahuan di mana amatir masih memainkan peran aktif, khususnya dalam hal penemuan dan pengamatan fenomena sementara. Astronomi jangan dikelirukan dengan astrologi, ilmusemu yang mengasumsikan bahwa takdir manusia dapat dikaitkan dengan letak benda-benda astronomis di langit. Meskipun memiliki asal-muasal yang sama, kedua bidang ini sangat berbeda; astronom menggunakan metode ilmiah, sedangkan astrolog tidak.

Cabang-cabang astronomi

Astronomy dipisahkan ke dalam cabang. Perbedaan pertama di antara 'teoretis dan observational' astronomi. Pengamat menggunakan berbagai jenis alat untuk mendapatkan data tentang gejala, data yang kemudian dipergunakan oleh teoretikus untuk 'membuat' teori dan model, menerangkan pengamatan dan memperkirakan yang baru.
Bidang yang dipelajari juga dikategorikan menjadi dua cara yang berbeda: dengan 'subyek', biasanya menurut daerah angkasa (misalnya Astronomi Galaksi) atau 'masalah' (seperti pembentukan bintang atau kosmologi); atau dari cara yang dipergunakan untuk mendapatkan informasi (pada hakekatnya, daerah di mana spektrum elektromagnetik dipakai). Pembagian pertama bisa diterapkan kepada baik pengamat maupun teoretikus, tetapi pembagian kedua ini hanya berlaku bagi pengamat (dengan tak sempurna), selama teoretikus mencoba menggunakan informasi yang ada, di semua panjang gelombang, dan pengamat sering mengamati di lebih dari satu daerah spektrum.

Berdasarkan subyek atau masalah

Kombinasi

Istilah kombinasi dalam matematika kombinatorik berarti himpunan objek yang tidak mementingkan urutan. Kombinasi berbeda dengan permutasi yang mementingkan urutan objek.

Definisi

Kombinasi C dari sebuah himpunan S adalah himpunan bagian dari S.
C \subseteq S
Sebagai contoh, misalkan terdapat suatu kumpulan buah: apel, jeruk, mangga, pisang. Maka {apel, jeruk} dan {jeruk, mangga, pisang} adalah merupakan kombinasi dari kumpulan tersebut. Seluruh himpunan bagian yang mungkin dibentuk dari kumpulan buah tersebut adalah:
  • tidak ada buah apa pun
  • satu buah:

    • apel
    • jeruk
    • mangga
    • pisang
  • dua buah:

    • apel, jeruk
    • apel, mangga
    • apel, pisang
    • jeruk, mangga
    • jeruk, pisang
    • mangga, pisang
  • tiga buah:

    • apel, jeruk, mangga
    • apel, jeruk, pisang
    • apel, mangga, pisang
    • jeruk, mangga, pisang
  • empat buah:

    • apel, jeruk, mangga, pisang
Kombinasi r dari sebuah himpunan S, berarti dari himpunan S diambil elemen sebanyak r untuk dijadikan sebuah himpunan baru. Dalam hal kumpulan buah di atas, himpunan {apel, jeruk, pisang} adalah sebuah kombinasi 3 dari S, sedangkan {jeruk, pisang} adalah sebuah kombinasi 2 dari S.
Banyaknya kombinasi r dari sebuah himpunan berisi n elemen dapat dihitung tanpa harus memperhatikan isi dari himpunan tersebut. Besarnya dinyatakan dengan fungsi:
C_r^n = \frac{n!}{r!(n-r)!}
Fungsi C_r^n dalam banyak literatur dinyatakan juga dengan notasi {n \choose r}.
Sebagai contoh, tanpa harus mengetahui elemen himpunan {apel, jeruk, mangga, pisang}, banyaknya kombinasi 3 dari himpunan tersebut dapat dihitung:
C_3^4 = \frac{4!}{3!(4-3)!} = 4

Sifat rekursif dari Kombinasi

Energi

Ditinjau dari perspektif fisika, setiap sistem fisik mengandung (secara alternatif, menyimpan) sejumlah energi; berapa tepatnya ditentukan dengan mengambil jumlah dari sejumlah persamaan khusus, masing-masing didesain untuk mengukur energi yang disimpan secara khusus. Secara umum, adanya energi diketahui oleh pengamat setiap ada pergantian sifat objek atau sistem. Tidak ada cara seragam untuk memperlihatkan energi;

Satuan

SI dan satuan berhubungan

Satuan SI untuk energi dan kerja adalah joule (J), dinamakan untuk menghormati James Prescott Joule dan percobaannya dalam persamaan mekanik panas. Dalam istilah yang lebih mendasar 1 joule sama dengan 1 newton-meter dan, dalam istilah satuan dasar SI, 1 J sama dengan 1 kg m2 s−2.

Transfer energi

Kerja

Kerja didefinisikan sebagai "batas integral" gaya F sejauh s:
 W = \int \mathbf{F} \cdot \mathrm{d}\mathbf{s}
Persamaan di atas mengatakan bahwa kerja (W) sama dengan integral dari dot product gaya (\mathbf{F}) di sebuah benda dan infinitesimal posisi benda (\mathbf{s}).

Jenis energi

Energi kinetik

Keadaan transisi

Transition State.png
Keadaan transisi (Bahasa Inggris: transition state) sebuah reaksi kimia merujuk pada konfigurasi tertentu pada koordinat reaksi. Ia didefinisikan sebagai sebuah keadaan yang memiliki energi tertinggi di sepanjang koordinat reaksi. Pada titik ini, dengan berasumsi bahwa reaksi yang sedang berjalan adalah reaksi takreversibel, penabrakan molekul reaktan akan selalu menghasilkan produk. Keadaan transisi yang diperlihatkan di bawah ini terjadi selama reaksi SN2 dari bromoetana dengan anion hidroksil.



http://id.wikipedia.org/wiki/Keadaan_transisi

Reaksi kimia

Reaksi kimia adalah suatu proses alam yang selalu menghasilkan antarubahan senyawa kimia. Senyawa ataupun senyawa-senyawa awal yang terlibat dalam reaksi disebut sebagai reaktan. Reaksi kimia biasanya dikarakterisasikan dengan perubahan kimiawi, dan akan menghasilkan satu atau lebih produk yang biasanya memiliki ciri-ciri yang berbeda dari reaktan. Secara klasik, reaksi kimia melibatkan perubahan yang melibatkan pergerakan elektron dalam pembentukan dan pemutusan ikatan kimia, walaupun pada dasarnya konsep umum reaksi kimia juga dapat diterapkan pada transformasi partikel-partikel elementer seperti pada reaksi nuklir.
Reaksi-reaksi kimia yang berbeda digunakan bersama dalam sintesis kimia untuk menghasilkan produk senyawa yang diinginkan. Dalam biokimia, sederet reaksi kimia yang dikatalisis oleh enzim membentuk lintasan metabolisme, di mana sintesis dan dekomposisi yang biasanya tidak mungkin terjadi di dalam sel dilakukan.

Jenis-jenis reaksi

Beragamnya reaksi-reaksi kimia dan pendekatan-pendekatan yang dilakukan dalam mempelajarinya mengakibatkan banyaknya cara untuk mengklasifikasikan reaksi-reaksi tersebut, yang sering kali tumpang tindih. Di bawah ini adalah contoh-contoh klasifikasi reaksi kimia yang biasanya digunakan.
  • Isomerisasi, yang mana senyawa kimia menjalani penataan ulang struktur tanpa perubahan pada kompoasisi atomnya
  • Kombinasi langsung atau sintesis, yang mana dua atau lebih unsur atau senyawa kimia bersatu membentuk produk kompleks:
N2 + 3 H2 → 2 NH3

Kinetika kimia

Laju reaksi suatu reaksi kimia merupakan pengukuran bagaimana konsentrasi ataupun tekanan zat-zat yang terlibat dalam reaksi berubah seiring dengan berjalannya waktu. Analisis laju reaksi sangatlah penting dan memiliki banyak kegunaan, misalnya dalam teknik kimia dan kajian kesetimbangan kimia. Laju reaksi secara mendasar tergantung pada:
  • Konsentrasi reaktan, yang biasanya membuat reaksi berjalan dengan lebih cepat apabila konsentrasinya dinaikkan. Hal ini diakibatkan karena peningkatan pertumbukan atom per satuan waktu,
  • Luas permukaan yang tersedia bagi reaktan untuk saling berinteraksi, terutama reaktan padat dalam sistem heterogen. Luas permukaan yang besar akan meningkatkan laju reaksi.
  • Tekanan, dengan meningkatkan tekanan, kita menurunkan volume antar molekul sehingga akan meningkatkan frekuensi tumbukan molekul.
  • Energi aktivasi, yang didefinisikan sebagai jumlah energi yang diperlukan untuk membuat reaksi bermulai dan berjalan secara spontan. Energi aktivasi yang lebih tinggi mengimplikasikan bahwa reaktan memerlukan lebih banyak energi untuk memulai reaksi daripada reaksi yang berenergi aktivasi lebih rendah.
  • Temperatur, yang meningkatkan laju reaksi apabila dinaikkan, hal ini dikarenakan temperatur yang tinggi meningkatkan energi molekul, sehingga meningkatkan tumbukan antar molekul per satuan waktu.
  • Keberadaan ataupun ketiadaan katalis. Katalis adalah zat yang mengubah lintasan (mekanisme) suatu reaksi dan akan meningkatkan laju reaksi dengan menurunkan energi aktivasi yang diperlukan agar reaksi dapat berjalan. Katalis tidak dikonsumsi ataupun berubah selama reaksi, sehingga ia dapat digunakan kembali.
  • Untuk beberapa reaksi, keberadaan radiasi elektromagnetik, utamanya ultraviolet, diperlukan untuk memutuskan ikatan yang diperlukan agar reaksi dapat bermulai. Hal ini utamanya terjadi pada reaksi yang melibatkan radikal.
Laju reaksi berhubungan dengan konsentrasi zat-zat yang terlibat dalam reaksi. Hubungan ini ditentukan oleh persamaan laju tiap-tiap reaksi. Perlu diperhatikan bahwa beberapa reaksi memiliki kelajuan yang tidak tergantung pada konsentrasi reaksi. Hal ini disebut sebagai reaksi orde nol.


http://id.wikipedia.org/wiki/Reaksi_kimia

Elektromagnetisme

Elektromagnetisme adalah cabang fisika tentang medan elektromagnetik yang mempelajari mengenai medan listrik dan medan magnet. Medan listrik dapat diproduksi oleh muatan listrik statik, dan dapat memberikan kenaikan pada gaya listrik. Medan magnet dapat diproduksi oleh gerakan muatan listrik, seperti arus listrik yang mengalir di sepanjang kabel dan memberikan kenaikan pada gaya magnetik.
Istilah "elektromagnetisme" berasal dari kenyataan bahwa medan listrik dan medan magnet adalah saling "berpelintiran"/terkait, dan dalam banyak hal, tidak mungkin untuk memisahkan keduanya. Contohnya,

Asam deoksiribonukleat / DNA


Asam deoksiribonukleat, lebih dikenal dengan DNA (bahasa Inggris: deoxyribonucleic acid), adalah sejenis asam nukleat yang tergolong biomolekul utama penyusun berat kering setiap organisme. Di dalam sel, DNA umumnya terletak di dalam inti sel.
Secara garis besar, peran DNA di dalam sebuah sel adalah sebagai materi genetik; artinya, DNA menyimpan cetak biru bagi segala aktivitas sel. Ini berlaku umum bagi setiap organisme. Di antara perkecualian yang menonjol adalah beberapa jenis virus (dan virus tidak termasuk organisme) seperti HIV (Human Immunodeficiency Virus).

Karakteristik kimia

DNA merupakan polimer yang terdiri dari tiga komponen utama,
  • gugus fosfat
  • gula deoksiribosa
  • basa nitrogen, yang terdiri dari:
    • Adenina (A)
    • Guanina (G)
    • Sitosina (C)
    • Timina (T)
Sebuah unit monomer DNA yang terdiri dari ketiga komponen tersebut dinamakan nukleotida, sehingga DNA tergolong sebagai polinukleotida.
Rantai DNA memiliki lebar 22-24 Å, sementara panjang satu unit nukleotida 3,3 Å. Walaupun unit monomer ini sangatlah kecil, DNA dapat memiliki jutaan nukleotida yang terangkai seperti rantai. Misalnya, kromosom terbesar pada manusia terdiri atas 220 juta nukleotida.
Rangka utama untai DNA terdiri dari gugus fosfat dan gula yang berselang-seling. Gula pada DNA adalah gula pentosa (berkarbon lima), yaitu 2-deoksiribosa. Dua gugus gula terhubung dengan fosfat melalui ikatan fosfodiester antara atom karbon ketiga pada cincin satu gula dan atom karbon kelima pada gula lainnya. Salah satu perbedaan utama DNA dan RNA adalah gula penyusunnya; gula RNA adalah ribosa.
DNA terdiri atas dua untai yang berpilin membentuk struktur heliks ganda. Pada struktur heliks ganda, orientasi rantai nukleotida pada satu untai berlawanan dengan orientasi nukleotida untai lainnya. Hal ini disebut sebagai antiparalel. Masing-masing untai terdiri dari rangka utama, sebagai struktur utama, dan basa nitrogen, yang berinteraksi dengan untai DNA satunya pada heliks. Kedua untai pada heliks ganda DNA disatukan oleh ikatan hidrogen antara basa-basa yang terdapat pada kedua untai tersebut. Empat basa yang ditemukan pada DNA adalah adenina (dilambangkan A), sitosina (C, dari cytosine), guanina (G), dan timina (T). Adenina berikatan hidrogen dengan timina, sedangkan guanina berikatan dengan sitosina. Segmen polipeptida dari DNA disebut gen, biasanya merupakan molekul RNA.

Fungsi biologis

Replikasi

Replikasi merupakan proses pelipatgandaan DNA. Proses replikasi ini diperlukan ketika sel akan membelah diri. Pada setiap sel, kecuali sel gamet, pembelahan diri harus disertai dengan replikasi DNA supaya semua sel turunan memiliki informasi genetik yang sama. Pada dasarnya, proses replikasi memanfaatkan fakta bahwa DNA terdiri dari dua rantai dan rantai yang satu merupakan "konjugat" dari rantai pasangannya. Dengan kata lain, dengan mengetahui susunan satu rantai, maka susunan rantai pasangan dapat dengan mudah dibentuk. Ada beberapa teori yang mencoba menjelaskan bagaimana proses replikasi DNA ini terjadi. Salah satu teori yang paling populer menyatakan bahwa pada masing-masing DNA baru yang diperoleh pada akhir proses replikasi; satu rantai tunggal merupakan rantai DNA dari rantai DNA sebelumnya, sedangkan rantai pasangannya merupakan rantai yang baru disintesis. Rantai tunggal yang diperoleh dari DNA sebelumnya tersebut bertindak sebagai "cetakan" untuk membuat rantai pasangannya.

Polimer


Suatu polimer adalah rantai berulang dari atom yang panjang, terbentuk dari pengikat yang berupa molekul identik yang disebut monomer. Sekalipun biasanya merupakan organik (memiliki rantai karbon), ada juga banyak polimer inorganik. Contoh terkenal dari polimer adalah plastik dan DNA.

Sekilas

Meskipun istilah polimer lebih populer menunjuk kepada plastik, tetapi polimer sebenarnya terdiri dari banyak kelas material alami dan sintetik dengan sifat dan kegunaan yang beragam. Bahan polimer alami seperti shellac dan amber telah digunakan selama beberapa abad. Kertas diproduksi dari selulosa, sebuah polisakarida yang terjadi secara alami yang ditemukan dalam tumbuhan. Biopolimer seperti protein dan asam nukleat memainkan peranan penting dalam proses biologi.

Klasifikasi polimer

Berdasarkan sumbernya

  1. Polimer alami : kayu, kulit binatang, kapas, karet alam, rambut
  2. Polimer sintetis
    1. Tidak terdapat secara alami: nylon, poliester, polipropilen, polistiren
    2. Terdapat di alam tetapi dibuat oleh proses buatan: karet sintetis
    3. Polimer alami yang dimodifikasi: seluloid, cellophane (bahan dasarnya dari selulosa tetapi telah mengalami modifikasi secara radikal sehingga kehilangan sifat-sifat kimia dan fisika asalnya)

Berdasarkan jumlah rantai karbonnya

TIME


Returns the decimal number for a particular time. If the cell format was General before the function was entered, the result is formatted as a date.
The decimal number returned by TIME is a value ranging from 0 (zero) to 0.99999999, representing the times from 0:00:00 (12:00:00 AM) to 23:59:59 (11:59:59 P.M.).
Syntax
TIME(hour,minute,second)
Hour    is a number from 0 (zero) to 32767 representing the hour. Any value greater than 23 will be divided by 24 and the remainder will be treated as the hour value. For example, TIME(27,0,0) = TIME(3,0,0) = .125 or 3:00 AM.
Minute    is a number from 0 to 32767 representing the minute. Any value greater than 59 will be converted to hours and minutes. For example, TIME(0,750,0) = TIME(12,30,0) = .520833 or 12:30 PM.
Second    is a number from 0 to 32767 representing the second. Any value greater than 59 will be converted to hours, minutes, and seconds. For example, TIME(0,0,2000) = TIME(0,33,22) = .023148 or 12:33:20 AM
Remark

DATE


Returns the sequential serial number that represents a particular date. If the cell format was General before the function was entered, the result is formatted as a date.
Syntax
DATE(year,month,day)
Year    The year argument can be one to four digits. Microsoft Excel interprets the year argument according to the date system you are using. By default, Excel for Windows uses the 1900 date system; Excel for the Macintosh uses the 1904 date system.


For the 1900 date system
·         If year is between 0 (zero) and 1899 (inclusive), Excel adds that value to 1900 to calculate the year. For example, DATE(108,1,2) returns January 2, 2008 (1900+108).

Fluida

Fluida adalah sub-himpunan dari fase benda, termasuk cairan, gas, plasma, dan padat plastik.
Fluida memilik sifat tidak menolak terhadap perubahan bentuk dan kemampuan untuk mengalir (atau umumnya kemampuannya untuk mengambil bentuk dari wadah mereka). Sifat ini biasanya dikarenakan sebuah fungsi dari ketidakmampuan mereka mengadakan tegangan geser(shear stress) dalam ekuilibrium statik. Konsekuensi dari sifat ini adalah hukum Pascal yang menekankan pentingnya tekanan dalam mengkarakterisasi bentuk fluid. Dapat disimpulkan bahwa fluida adalah zat atau entitas yang terdeformasi secara berkesinambungan apabila diberi tegangan geser walau sekecil apapun tegangan geser itu.
Fluid dapat dikarakterisasikan sebagai:
  • Fluida Newtonian
  • Fluida Non-Newtonian

PMT

PMT
Calculates the payment for a loan based on constant payments and a constant interest rate.
Syntax
PMT(rate,nper,pv,fv,type)
For a more complete description of the arguments in PMT, see the PV function.
Rate    is the interest rate for the loan.
Nper    is the total number of payments for the loan.
Pv    is the present value, or the total amount that a series of future payments is worth now; also known as the principal.
Fv    is the future value, or a cash balance you want to attain after the last payment is made. If fv is omitted, it is assumed to be 0 (zero), that is, the future value of a loan is 0.
Type    is the number 0 (zero) or 1 and indicates when payments are due.
Set type equal to If payments are due
0 or omitted At the end of the period
1 At the beginning of the period

Remarks
  • The payment returned by PMT includes principal and interest but no taxes, reserve payments, or fees sometimes associated with loans.
  • Make sure that you are consistent about the units you use for specifying rate and nper. If you make monthly payments on a four-year loan at an annual interest rate of 12 percent, use 12%/12 for rate and 4*12 for nper. If you make annual payments on the same loan, use 12 percent for rate and 4 for nper. 
PMT
To find the total amount paid over the duration of the loan, multiply the returned PMT value by nper.
Example 1
The example may be easier to understand if you copy it to a blank worksheet.

SUMIF

SUMIF
Adds the cells specified by a given criteria.
Syntax
SUMIF(range,criteria,sum_range)
Range    is the range of cells you want evaluated.
Criteria    is the criteria in the form of a number, expression, or text that defines which cells will be added. For example, criteria can be expressed as 32, "32", ">32", "apples".
Sum_range    are the actual cells to sum.
Remarks
  • The cells in sum_range are summed only if their corresponding cells in range match the criteria.
  • If sum_range is omitted, the cells in range are summed.
  • Microsoft Excel provides additional functions that can be used to analyze your data based on a condition. For example, to count the number of occurrences of a string of text or a number within a range of cells, use the COUNTIF function. To have a formula return one of two values based on a condition, such as a sales bonus based on a specified sales amount, use the IF function.

SIN

SIN
Returns the sine of the given angle.
Syntax
SIN(number)
Number    is the angle in radians for which you want the sine.
Remark
If your argument is in degrees, multiply it by PI()/180 or use the RADIANS function to convert it to radians.
Example
The example may be easier to understand if you copy it to a blank worksheet.



A
B
1
Formula
Description (Result)
2
=SIN(PI())
Sine of pi radians (0, approximately)
3
=SIN(PI()/2)
Sine of pi/2 radians (1)
4
=SIN(30*PI()/180)
Sine of 30 degrees (0.5)
5
=SIN(RADIANS(30))
Sine of 30 degrees (0.5)

MAX

MAX
Returns the largest value in a set of values.
Syntax
MAX(number1,number2,...)
Number1, number2, ...    are 1 to 30 numbers for which you want to find the maximum value.
Remarks
  • You can specify arguments that are numbers, empty cells, logical values, or text representations of numbers. Arguments that are error values or text that cannot be translated into numbers cause errors.
  • If an argument is an array or reference, only numbers in that array or reference are used. Empty cells, logical values, or text in the array or reference are ignored. If logical values and text must not be ignored, use MAXA instead.
  • If the arguments contain no numbers, MAX returns 0 (zero).
Example
The example may be easier to understand if you copy it to a blank worksheet.



A
1
Data
2
10
3
7
4
9
5
27
6
2


Formula
Description (Result)
=MAX(A2:A6)
Largest of the numbers above (27)
=MAX(A2:A6, 30)
Largest of the numbers above and 30 (30)


COUNT


Counts the number of cells that contain numbers and also numbers within the list of arguments. Use COUNT to get the number of entries in a number field that's in a range or array of numbers.
Syntax
COUNT(value1,value2,...)
Value1, value2, ...    are 1 to 30 arguments that can contain or refer to a variety of different types of data, but only numbers are counted.
Remarks
  • Arguments that are numbers, dates, or text representations of numbers are counted; arguments that are error values or text that cannot be translated into numbers are ignored.
  • If an argument is an array or reference, only numbers in that array or reference are counted. Empty cells, logical values, text, or error values in the array or reference are ignored. If you need to count logical values, text, or error values, use the COUNTA function.

HYPERLINK


Creates a shortcut or jump that opens a document stored on a network server, an intranet, or the Internet. When you click the cell that contains the HYPERLINK function, Microsoft Excel opens the file stored at link_location.

Syntax
HYPERLINK(link_location,friendly_name)

Link_location is the path and file name to the document to be opened as text. Link_location can refer to a place in a document— such as a specific cell or named range in an Excel worksheet or workbook, or to a bookmark in a Microsoft Word document. The path can be to a file stored on a hard disk drive, or the path can be a universal naming convention (UNC) path on a server (in Microsoft Excel for Windows) or a Uniform Resource Locator (URL) path on the Internet or an intranet.
· Link_location can be a text string enclosed in quotation marks or a cell that contains the link as a text string.
· If the jump specified in link_location does not exist or cannot be navigated, an error appears when you click the cell.
Friendly_name is the jump text or numeric value that is displayed in the cell. Friendly_name is displayed in blue and is underlined. If friendly_name is omitted, the cell displays the link_location as the jump text.
· Friendly_name can be a value, a text string, a name, or a cell that contains the jump text or value.
· If friendly_name returns an error value (for example, #VALUE!), the cell displays the error instead of the jump text.
Remark
To select a cell that has a hyperlink in it without jumping to the hyperlink destination, click the cell and hold the mouse button until the cursor becomes a cross (+), then release the mouse button.
Examples
The following example opens a worksheet named Budget Report.xls that is stored on the Internet at the location named example.microsoft.com/report and displays the text "Click for report":
=HYPERLINK("http://example.microsoft.com/report/budget report.xls", "Click for report")

IF


Returns one value if a condition you specify evaluates to TRUE and another value if it evaluates to FALSE.
Use IF to conduct conditional tests on values and formulas.
Syntax
IF(logical_test,value_if_true,value_if_false)
Logical_test is any value or expression that can be evaluated to TRUE or FALSE. For example, A10=100 is a logical expression; if the value in cell A10 is equal to 100, the expression evaluates to TRUE. Otherwise, the expression evaluates to FALSE. This argument can use any comparison calculation operator.
Value_if_true is the value that is returned if logical_test is TRUE. For example, if this argument is the text string "Within budget" and the logical_test argument evaluates to TRUE, then the IF function displays the text "Within budget". If logical_test is TRUE and value_if_true is blank, this argument returns 0 (zero). To display the word TRUE, use the logical value TRUE for this argument. Value_if_true can be another formula.
Value_if_false is the value that is returned if logical_test is FALSE. For example, if this argument is the text string "Over budget" and the logical_test argument evaluates to FALSE, then the IF function displays the text "Over budget". If logical_test is FALSE and value_if_false is omitted, (that is, after value_if_true, there is no comma), then the logical value FALSE is returned. If logical_test is FALSE and value_if_false is blank (that is, after value_if_true, there is a comma followed by the closing parenthesis), then the value 0 (zero) is returned. Value_if_false can be another formula.
Remarks
  • Up to seven IF functions can be nested as value_if_true and value_if_false arguments to construct more elaborate tests. See the last of the following examples.

  • When the value_if_true and value_if_false arguments are evaluated, IF returns the value returned by those statements.

  • If any of the arguments to IF are arrays, every element of the array is evaluated when the IF statement is carried out.

  • Microsoft Excel provides additional functions that can be used to analyze your data based on a condition. For example, to count the number of occurrences of a string of text or a number within a range of cells, use the COUNTIF worksheet function. To calculate a sum based on a string of text or a number within a range, use the SUMIF worksheet function. Learn about calculating a value based on a condition.

Example 1

AVERAGE


AVERAGE

Returns the average (arithmetic mean) of the arguments.
Syntax
AVERAGE(number1,number2,...)
Number1, number2, ...    are 1 to 30 numeric arguments for which you want the average.
Remarks
  • The arguments must either be numbers or be names, arrays, or references that contain numbers.

  • If an array or reference argument contains text, logical values, or empty cells, those values are ignored; however, cells with the value zero are included.

Tip
When averaging cells, keep in mind the difference between empty cells and those containing the value zero, especially if you have cleared the Zero values check box on the View tab (Options command, Tools menu). Empty cells are not counted, but zero values are.

SUM


SUM

Adds all the numbers in a range of cells.
Syntax
SUM(number1,number2, ...)
Number1, number2, ...    are 1 to 30 arguments for which you want the total value or sum.
Remarks
  • Numbers, logical values, and text representations of numbers that you type directly into the list of arguments are counted. See the first and second examples following.

  • If an argument is an array or reference, only numbers in that array or reference are counted. Empty cells, logical values, text, or error values in the array or reference are ignored. See the third example following.

  • Arguments that are error values or text that cannot be translated into numbers cause errors.

Example

Asam amino

Asam amino adalah sembarang senyawa organik yang memiliki gugus fungsional karboksil (-COOH) dan amina (biasanya -NH2). Dalam biokimia seringkali pengertiannya dipersempit: keduanya terikat pada satu atom karbon (C) yang sama (disebut atom C "alfa" atau α). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa. Dalam bentuk larutan, asam amino bersifat amfoterik: cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi zwitter-ion. Asam amino termasuk golongan senyawa yang paling banyak dipelajari karena salah satu fungsinya sangat penting dalam organisme, yaitu sebagai penyusun protein.

Struktur asam amino
Struktur asam α-amino, dengan gugus amina di sebelah kiri dan gugus karboksil di sebelah kanan.
Struktur asam amino secara umum adalah satu atom C yang mengikat empat gugus: gugus amina (NH2), gugus karboksil (COOH), atom hidrogen (H), dan satu gugus sisa (R, dari residue) atau disebut juga gugus atau rantai samping yang membedakan satu asam amino dengan asam amino lainnya.
Atom C pusat tersebut dinamai atom Cα ("C-alfa") sesuai dengan penamaan senyawa bergugus karboksil, yaitu atom C yang berikatan langsung dengan gugus karboksil. Oleh karena gugus amina juga terikat pada atom Cα ini, senyawa tersebut merupakan asam α-amino.
Asam amino biasanya diklasifikasikan berdasarkan sifat kimia rantai samping tersebut menjadi empat kelompok. Rantai samping dapat membuat asam amino bersifat asam lemah, basa lemah, hidrofilik jika polar,
dan hidrofobik jika nonpolar.

Isomerisme pada asam amino

Biomolekul

Biomolekul merupakan senyawa-senyawa organik sederhana pembentuk organisme hidup dan bersifat khas sebagai produk aktivitas biologis. Biomolekul dapat dipandang sebagai turunan hidrokarbon, yaitu senyawa karbon dan hidrogen yang mempunyai kerangka dasar yang tersusun dari atom karbon, yang disatukan oleh ikatan kovalen. Kerangka dasar hidrokarbon bersifat sangat stabil, karena ikatan tunggal dan ganda karbon-karbon menggunakan pasangan elektron bersama-sama secara merata. Biomolekul bersifat polifungsionil, mengandung dua atau lebih jenis gugus fungsi yang berbeda. Pada molekul tersebut, tiap gugus fungsi mempunyai sifat dan reaksi kimia sendiri-sendiri.

Bentuk senyawa biomolekul

Senyawa-senyawa biomolekul biasanya dikenal dalam empat bentuk:

Biokimia

Biokimia adalah kimia mahluk hidup. Biokimiawan mempelajari molekul dan reaksi kimia terkatalisis oleh enzim yang berlangsung dalam semua organisme. Lihat artikel biologi molekular untuk diagram dan deskripsi hubungan antara biokimia, biologi molekular, dan genetika.
Biokimia merupakan ilmu yang mempelajari struktur dan fungsi komponen selular, seperti protein, karbohidrat, lipid, asam nukleat, dan biomolekul lainnya. Saat ini biokimia lebih terfokus secara khusus pada kimia reaksi termediasi enzim dan sifat-sifat protein.
Saat ini, biokimia metabolisme sel telah banyak dipelajari. Bidang lain dalam biokimia di antaranya sandi genetik (DNA, RNA), sintesis protein, angkutan membran sel, dan transduksi sinyal.

Perkembangan biokimia

Kebangkitan biokimia diawali dengan penemuan pertama molekul enzim, diastase, pada tahun 1833 oleh Anselme Payen. Tahun 1828, Friedrich Wöhler menerbitkan sebuah buku tentang sintesis urea, yang membuktikan bahwa senyawa organik dapat dibuat secara mandiri.

Molekul

Molekul didefinisikan sebagai sekelompok atom (paling sedikit dua) yang saling berikatan dengan sangat kuat (kovalen) dalam susunan tertentu dan bermuatan netral serta cukup stabil. Menurut definisi ini, molekul berbeda dengan ion poliatomik. Dalam kimia organik dan biokimia, istilah molekul digunakan secara kurang kaku, sehingga molekul organik dan biomolekul bermuatan pun dianggap termasuk molekul.
Dalam teori kinetika gas, istilah molekul sering digunakan untuk merujuk pada partikel gas apapun tanpa bergantung pada komposisinya. Menurut definisi ini, atom-atom gas mulia dianggap sebagai molekul walaupun gas-gas tersebut terdiri dari atom tunggal yang tak berikatan.
Sebuah molekul dapat terdiri atom-atom yang berunsur sama (misalnya oksigen O2), ataupun terdiri dari unsur-unsur berbeda (misalnya air H2O). Atom-atom dan kompleks yang berhubungan secara non-kovalen (misalnya terikat oleh ikatan hidrogen dan ikatan ion) secara umum tidak dianggap sebagai satu molekul tunggal.

Ilmu molekuler

Ilmu yang mempelajari molekul disebut kimia molekuler ataupun fisika molekuler bergantung pada fokus kajiannya. Kimia molekuler berkutat pada hukum-hukum yang mengatur interaksi antara molekul, manakala fisika molekuler berkutat pada hukum-hukum yang mengatur struktur dan sifat-sifat molekul. Dalam prakteknya, perbedaan kedua ilmu tersebut tidaklah jelas dan saling bertumpang tindih. Dalam ilmu molekuler, sebuah molekul terdiri dari suatu sistem stabil yang terdiri dari dua atau lebih molekul. Ion poliatomik dapat pula kadang-kadang dianggap sebagai molekul yang bermuatan. Istilah molekul tak stabil digunakan untuk merujuk pada spesi-spesi kimia yang sangat reaktif.
 

Sejarah

Teori Himpunan

Teori Himpunan adalah teori mengenai kumpulan objek-objek abstrak. Teori himpunan biasanya dipelajari sebagai salah satu bentuk:
  • Teori himpunan naif, dan
  • Teori himpunan aksiomatik, yang mendasarkan teori himpunan pada istilah-istilah dan relasi yang tak terdefinisikan, serta aksioma-aksioma yang nantinya akan membangun keseluruhan teori himpunan.

Himpunan

Himpunan adalah kumpulan dari objek-objek tertentu yang tercakup dalam satu kesatuan dengan keterangannya yang jelas.

Sistem Bilangan

Sistem bilangan numerik adalah sebuah simbol atau kumpulan dari simbol yang merepresentasikan sebuah angka. Numerik berbeda dengan angka. Simbol "11", "sebelas" and "XI" adalah numerik yang berbeda, tetapi merepresentasikan angka yang sama yaitu sebelas.
Artikel ini akan menjelaskan beberapa sistem numerik. Secara garis besar terdapat dua sistem numerik, yaitu sistem numerik berdasarkan penambahan (english: addition) dan sistem numerik berdasarkan posisi (eng. position).

Sistem Numerik Berdasarkan Penambahan

Sistem numerik yang paling sederhana adalah Sistem numerik unary. Sistem ini sering dipakai untuk melakukan pemilihan pada suatu voting. Contoh dari Sistem numerik Unary adalah Tally mark. Kerugiann penggunaan dari sistem numerik Unary adalah sistem ini membutuhkan tempat yang besar.
Selain sistem numerik unary, contoh lain dari sistem numerik berdasarkan penambahan adalah angka Romawi.
 
I    1
V    5
X    10
L    50
C    100
D    500
M    1000

Besaran

Besaran adalah segala sesuatu yang dapat diukur yang memiliki nilai dan satuan. Besaran menyatakan sifat dari benda. Sifat ini dinyatakan dalam angka melalui hasil pengukuran. Oleh karena satu besaran berbeda dengan besaran lainnya, maka ditetapkan satuan untuk tiap besaran. Satuan juga menunjukkan bahwa setiap besaran diukur dengan cara berbeda.

Besaran fisis terdiri dari:

Besaran pokok

Besaran pokok adalah besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain.


Besaran pokok dalam Sistem Internasional
Nama Simbol dalam rumus Simbol dimensi Satuan SI Simbol satuan
Panjang l, x, r, dll. L meter m
Waktu t T detik (sekon) s
Massa m M kilogram kg
Arus listrik I, i I ampere A
Suhu T θ kelvin K
Jumlah molekul n N Mol mol
Intensitas cahaya Iv J Candela Cd

Keterangan dari macam-macam besaran pokok itu adalah: